Orbital Test Stand Project Proposal

Mary Begay, Brett Booen, Calvin Boothe, James Ellis, and Nicholas Garcia

December 2, 2014

Overview

- Fall 2014 Timeline
- Orbital Test Stand
- Problem Definition
 PHASE I
- Concept Generation
- Concept Selection
- Winches vs. Wheels
- Final Design Selection
 Components
- Cost Analysis
- Spring 2015 Timeline
- Conclusion

PHASE III

1

Fall 2014 Timeline

Orbital Test Stand

Test Stand with one 570-pound fairing loaded

Orbital Test Stand with idea of scale

Brett Booen

★ CUSTOMER NEEDS:

- The procedure for rotating launch vehicles on the test stand is inefficient and unsafe.
- Rotating launch vehicles on the test stand places Orbital engineers in a dangerous position.
- The setup time for testing is exhausted by the need to manually rotate the launch vehicles.

PHASE I

Brett Booen

★ PROJECT GOALS:

- Easy to **operate**
- Easy to implement
- Easy to maintain
- Easy to inspect
- Meet customer requirements

★ OBJECTIVES:

Objective	Measurement Basis	Units
Minimize time it takes to load launch vehicle	Time to load launch vehicle with new mechanism in place	
onto test stand	compared to current procedure	minutes
Minimize costs associated with new design	New design cost compared to maintaining current procedure	
concept	and other designs	dollars
Limit new modifications made to test stand	Cost of material for modifications	dollars
Handle the off-center loads of Antares payload		
fairings when loaded on stand	Strength	psi
Minimize space requirements	Square footage required by new mechanism	ft ²

PHASE I

Brett Booen

CONSTRAINTS:

- Continuous rotation for +/- 360 degrees
- Rotational speed not exceeding 1 RPM
- Counteract off-centered load of 570 lb at 153 in
- Minimal modifications

Brett Booen

INPUT FROM ORBITAL

Concept Selection - 2 Finalists

PHASE II

Mary Begay

Pros and Cons

Winch Design

- Pros
 - Low Maintenance
 - Easy To Operate
 - Low Installation Costs
 - Easy To Transport
 - No Braking Mechanism
- Cons
 - Expensive Winch
 - Similar To Current Design
 - Safety Concerns
 - Aesthetics

Interior Wheels Design

- Pros
 - Aesthetics
 - Easy To Operate
 - Modular
 - High Fatigue Life
 - Low-Cost Components
- Cons
 - High Technician Costs
 - High Maintenance
 - Safety Concerns for Belt
 - Braking Mechanism

Winch Implementation Problems

- Interference With Chain
- Mounting To Structure
- Additional Coil Space

PHASE III

Final Selection - Interior Wheels

PHASE III

- Orbital's Decision
 - Aesthetics
 - Cost
 - Maintenance
 - Ease of Use
 - Elegant

Calvin Boothe

Wheels Design - Overview

PHASE III

Nick Garcia

Retainer

Washer

Cotter / Pin

Nut

Motor

- McMaster-Carr
- 1 Hp
- 1725 RPM
- Steel Housing
- Motor can directly be mounted to equipment
- Heavy duty applications with high starting torque

Speed Reducer

- Grainger
- 1 Stage Reversible
- Nominal Output RPM 18
- Max Torque 1655 in-lb
- Aluminum housing
- Bronze alloy worm gear
- Hardened alloy steel worm pinion gear

15

Roller Chain

- McMaster-Carr
- Standard single strand
- Steel
- Working Load 803 lbs
- Connecting link for lengths:
 - **1 20 ft**
 - **50 ft**
 - **100 ft**

Sprockets

- Gear Box
 - o 16 teeth
 - A 4.22 in
 - B 1.25 in
 - C 3.06 in
- Wheel
 - \circ 32 teeth
 - $\circ~$ A 8.07 in
 - **B 1.25 in**
 - C 4.00 in

A

PHASE III

Pneumatic Tires

- McMaster-Carr
- 16.1inch diameter
- J-Tread Type
- 4.7inch wheel width
- 590 lbf load rating
- 60 psi pressure rating
- Treaded tire has more load capacity vs smooth tire

Spindle Assembly

- Gempler's
- 4 Hole Straight Spindle Stub Axle Assembly
- Option to weld onto flange or directly to mounting plate

Mounting Plate

- Motor and gearbox will be mounted to the plate
- The plate will be mounted to the test stand
- One uniform piece

PHASE III

• Utilize pre-existing holes on test stand

James Ellis

Cost Analysis

PHASE III

Description	Quantity	Cost (each)	Line Total
Motor	2	\$241.79	\$483.58
Speed Reducer	2	\$983.00	\$1966.00
Roller Chain	2	\$38.90	\$77.80
16 T Sprocket	2	\$37.03	\$74.06
32 T Sprocket	2	\$80.13	\$160.26
Pneumatic Tire	2	\$35.78	\$71.56
Mounts	2	\$15.00	\$30.00
Spindle Assy.	2	\$75.85	\$151.70
Labor	n/a	\$1000.00	\$1000.00
		Total	\$4014.96

James Ellis

Spring 2015 Timeline

James Ellis

*Only accounts for \$1,000 in labor.

Orbital Test Stand

NAU Senior Capstone Design Team

Left to Right: James Ellis Brett Booen Calvin Boothe Mary Begay Nick Garcia